Verve

Research Overview

Contents

- The Problem
- Previous Work
- Current Direction
- The Verve Project
- Future Plans

The Problem

- Simulated creatures and robots cannot adapt easily to complex, changing environments
- Most current approaches use static, "hand-designed" motor control mechanisms
- An ideal agent would:
 - Learn motor control from direct experience at least as well as animals and humans
 - Learn from a simple reward signal, not from explicit feedback (i.e. critic vs. teacher)

Previous Work

- Simulated humans standing, jumping, and walking tasks
- Learning agents represented as artificial neural networks
- Genetic algorithms (GAs) for "training"
 - A fancy hill-climbing algorithm
 - Can be used to search for good neural network parameters
- Training a neural network with a GA
 - Start with a "population" of random neural networks
 - Evaluate each one on some task
 - Throw away the bad neural networks
 - Mate the good networks to produce offspring
 - Randomly mutate the new offspring
- Videos simulated human standing, jumping

Previous Work

- NEAT algorithm (Ken Stanley, UT)
 - Principled crossover method using "historical markings" to keep track of which genes are compatible
 - Speciation, making use of the historical markings to measure diversity
 - Incremental growth from minimal structure, ensuring a search through the smallest fitness landscape; new structure only stays when it is beneficial
- Videos simulated biped walking

- Genetic algorithms worked ok for offline-training, but they don't seem biologically-realistic
- GAs require an unnatural iterative, trial-based process, but the real world contains just one long trial
- A better solution would:
 - Be more biologically-realistic
 - Have a good mathematical foundation
- Why is biological realism important?
 - Biological brains have already proven themselves as efficient learning mechanisms
 - Copying biological learning mechanisms seems to be a good route to take

- Reinforcement learning: "learning what to do so as to maximize a numerical reward signal"
- Strong mathematical foundation
- 3 essential components:
 - Policy: maps states to actions
 - Reinforcement signal: provides evaluative feedback
 - Value function: stores a "value" for each state
- Good agents must:
 - Try to learn the optimal value function
 - Use the value function to improve its policy

"Reinforcement Learning" by Sutton & Barto

Reinforcement learning's roots

- Dynamic programming
 - Given a perfect model of the environment, compute the optimal policy (think IBM's Deep Blue)
 - Basically searching through all possible future states
 - Intractable for large (e.g. continuous) state spaces
- Monte carlo methods
 - No model necessary
 - Learn directly from raw, sampled experience
 - Usually must wait until the end of a long sequence before learning anything
- Temporal difference
 - Combination of dynamic programming and monte carlo
 - Computes the difference in value estimations between successive states
 - TD error = next reward + next value estimation current value estimation
 - Only non-zero TD errors cause learning (i.e. surprising events cause learning; no learning once rewards are fully predicted)
 - Eventually, neutral stimuli predict rewards

- Why neural networks?
 - Way too many states to keep track of internally
 - Neural networks can approximate complex state spaces with a few parameters
 - Biologically-realistic

- If the reward comes after several actions, which action deserves the reward?
- Credit assignment problem
 - Structural
 - Temporal
- Eligibility traces
 - Each action leaves a decaying trace
 - Only eligible actions get reinforced

Planning

- Learning how the world works by building an internal model
- Using the model to learn from "simulated experiences"
- The better the model, the more useful the planning
- Strongly linked to dynamic programming

- Main ideas from neuroscientific research
 - Dopamine neuron activity is somehow related to rewards
 - Most interesting hypothesis: dopamine neurons encode reward prediction errors
 - Dopamine neuron activity is <u>very</u> similar to temporal difference error signal

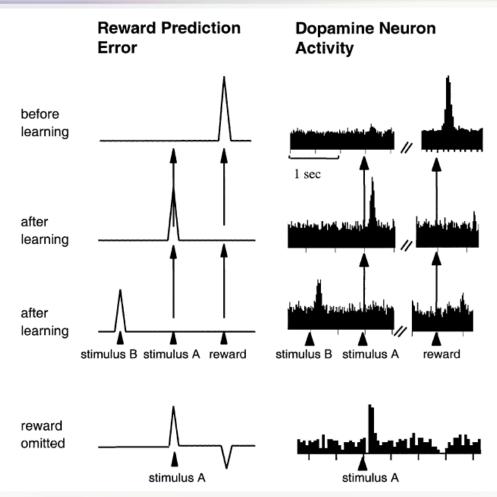
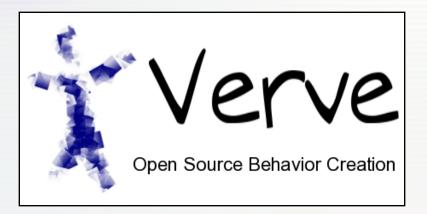


Figure taken from Suri, R. E. (2002). TD models of reward predictive responses in dopamine neurons.

What is Verve?



- Reinforcement learning for general motor control tasks
 - Ground and air vehicles
 - Wheeled and legged robots/artificial creatures
 - Any controlled system with complex behaviors
- Real and simulated agents
- Biologically-inspired methods
 - Artificial neural networks for function approximation
 - Reward prediction mechanisms
- Open Source software
- Current status
 - Finishing background research in neuroscience and machine learning
 - Testing new reinforcement learning algorithms on benchmark tasks

Future Plans

- Creating sample applications
 - Cart-pole test
 - Mountain-car test
 - Simulated creatures
- Planning/simulated experiences
- Train agents in simulation, then transfer them to real robots
- SETI @Home-like capabilities to distribute computations

Check the Verve website for updates: www.vrac.iastate.edu/~streeter/verve/main.html