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Introduction 

Reinforcement learning (RL) agents can reduce learning 
time dramatically by planning with learned predictive 
models. Such planning agents learn to improve their 
actions using planning trajectories, sequences of imagined 
interactions with the environment. However, planning 
agents are not intrinsically driven to improve their 
predictive models, which is a necessity in complex 
environments. This problem can be solved by adding a 
curiosity drive that rewards agents for experiencing novel 
states. Curiosity acts as a higher form of exploration than 
simple random action selection schemes because it 
encourages targeted investigation of interesting situations. 
 In a task with multiple external rewards, we show that 
RL agents using uncertainty-limited planning trajectories 
and intrinsic curiosity rewards outperform non-curious 
planning agents. The results show that curiosity helps drive 
planning agents to improve their predictive models by 
exploring uncertain territory. To the author’s knowledge, 
no previous work has tested the benefits of curiosity with 
planning trajectories. 

 Models of Curiosity 

The model of curiosity used in Barto, Singh, & Chentanez 
(2004) rewards agents for experiencing novel states. The 
authors used this model in a RL framework that developed 
hierarchical sets of skills, driven by curiosity rewards.  
 Schmidhuber (1991) described a model of curiosity that 
rewards agents when prediction errors decrease over time. 
This method is more robust than simply rewarding agents 
in novel states. It avoids the problem of attraction to 
random signals in non-deterministic environments. 
 Oudeyer & Kaplan (2004) presented a mechanism called 
“Intelligent Adaptive Curiosity” (IAC) which drives agents 
to explore situations that are neither too predictable nor too 
unpredictable. This has similarities to Schmidhuber’s 
(1991) model. However, IAC helps solve a subtle problem: 
agents sometimes learn to alternate between unpredictable 
and predictable situations, causing them to receive rewards 
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for reducing their prediction uncertainty. To overcome 
this, IAC tracks similar situations and measures 
uncertainty reduction only within a specific situation. 

Agent Architecture 

The architecture used here is designed as an actor-critic 
model with temporal difference learning. Observations are 
converted to a radial basis function state representation. 
The value function and policy are represented as simple 
linear neural networks. Planning is performed using a set 
of predictor neural networks that, given an observation and 
hypothetical action, output a predicted next observation 
and reward, along with a metaprediction of the agent’s 
own prediction uncertainty. These predictors are trained 
with the actual next observation, reward, and prediction 
error, respectively. 
 At each time step, first the predictors output their 
predictions and are trained with the actual data received. 
Then an uncertainty-limited planning trajectory begins, 
starting from the current actual observation. This trajectory 
continues until either: 1) the maximum trajectory length is 
exceeded, or 2) the prediction uncertainty exceeds some 
threshold. At each step of the planning trajectory, the 
policy uses a softmax action selection scheme. The value 
function and policy are trained with temporal difference 
learning, with the total reward equal to the predicted 
current reward plus a value proportional to the prediction 
uncertainty (i.e. the curiosity reward). Thus, the curiosity 
model used here is most similar to that of Barto, Singh, & 
Chentanez (2004). (This relatively simple model is 
sufficient for the deterministic task used in the next 
section.) Note that reinforcement learning is performed 
using only predicted values; the actual values are used only 
to train the predictors. 
 Temporal difference learning, actor-critic models, and 
planning trajectories are described in Sutton & Barto 
(1998). For more details about the present architecture, 
including learning update equations and detailed diagrams, 
see Streeter (2005). An open source implementation of this 
architecture, images and videos of applications, etc. are 
available at: http://verve-agents.sourceforge.net and 
http://www.vrac.iastate.edu/~streeter/AAAI-2006. 



Results 

To test the benefits of planning trajectories with curiosity, 
the discrete environment shown in Figure 1 is used. An 
agent in this environment is able to sense its 2-dimensional 
position and can move left, right, up, down, or remain in 
place. Three spaces in the environment contain small 
rewards, and one contains a large reward. Performance is 
measured as the sum of rewards received over the course 
of a single trial. Each trial lasts 100 time steps. 
 

 

Figure 1: A discrete 2D world with multiple rewards. The 
space marked “A” is the agent's starting location. Spaces 

with positive numbers indicate reward locations. All other 
spaces yield rewards of zero. 

 
 The performance of three RL agents is compared: one 
agent without planning or curiosity, one with planning, and 
one with planning and curiosity. The hypothesis is that 
curious agents will be driven to explore the entire 
environment, eventually finding the larger reward. Non-
curious agents, on the other hand, will quickly find the 
small rewards and will not be motivated to continue 
searching. 
 

 

Figure 2: Learning performance of three RL agents: one 
without planning or curiosity, one with planning, and one 
with planning and curiosity. Results are averaged over 50 

runs. Planning agents were allowed a maximum of 50 steps 
per planning trajectory. 

 The results in Figure 2 show the three agents’ reward 
sums over time. The agent with planning outperforms the 
one without planning because it is able to train its value 
function and policy many times per step during a planning 
trajectory. Curiosity is clearly beneficial on this task, as 
evidenced by the higher sum achieved by the curious 
agent. The non-curious planning agent quickly finds one of 
the small rewards, but then it trains its value function and 
policy to focus on this treasure without worrying about the 
rest of the state space. The curious agent, with its intrinsic 
drive to experience novel states, consistently finds the 
larger goal, yielding a higher reward sum. 
 The curious agent plot shows a noticeable delay before 
any visible improvement. This is a curiosity-driven 
exploration phase. During this time the curious agent is 
mainly driven by curiosity rewards. Around trial 15, its 
prediction uncertainty is low, and its predictive model is 
accurate, so it no longer generates intrinsic curiosity 
rewards. Instead, it begins maximizing external reward 
intake. 

Discussion 

We have shown, using a reinforcement learning task, that 
curiosity is beneficial to agents using planning trajectories. 
One of the main purposes of planning is to reduce the 
number of trials needed to learn a task (i.e. to train a value 
function and policy). Curiosity drives the agent to improve 
its predictive model, increasing the overall effectiveness of 
planning. In complex environments with multiple external 
rewards, curiosity is essential.  It promotes targeted 
exploration towards uncertain territory. 
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