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Human Computer Interaction (

Motivation

sensory
inputs

motor
outputs

« Software brain as a black box (agent approach)
« Adaptable (machine learning algorithms)

« Useful (achieves human-provided goals)

« Autonomous goal selection (curiosity)

» Arbitrary body (sensor & motor) configurations

IOWA STATE UNIVERSITY



System Objectives

What should our software brain do?

Achieve human-provided goals

Define goals with theoretical reinforcement learning
— Positive reinforcement = reward = good

— Negative reinforcement = punishment = bad

— Try to maximize positive reinforcement

Human programmer defines goals, gives rewards
for achieving them

System implicitly achieves goals by maximizing
rewards

IOWA STATE UNIVERSITY



System Objectives

Divide into two learning objectives and rewards:

« Objective 1 Achieve external goals
— External rewards given by programmer
— Needs a good world model

« Objective 2 Achieve internal curiosity goals

— Internal rewards proportional to improvements to the
world model

— Autonomous goal selection
— Helps achieve Objective 1

IOWA STATE UNIVERSITY

OF SCIENCE AND TECHNOLOGY



Human Computer Interaction (

Organizing Principle: The Brain

Mammalian brain already achieves our objectives

— Learned world model (sensory and motor cortex)

— Learning context-dependent action selection (basal ganglia)
Use abstract brain organization to guide architecture design
What was evolution “trying” to design?

Each major brain structure provides unique computational
benefit to the animal

...which machine learning algorithms solve similar
problems? (feature extraction, temporal pattern
representation, credit assignment, supervised learning,
short-term memory storage and retrieval, ...)
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Research Strategy

Design abstract architecture of interacting components
— Define computational needs
— Find the current best practical algorithms to fulfill each need
Implement components in software
Test individual pieces in isolation
— Unsupervised learning (density estimation, pattern classification)
— Sequential prediction (temporal pattern learning)
— Reinforcement learning (classical conditioning, toy problems)
Integrate components into a single system
Simulated test environments, bodies, real-time probe tools

Measure overall progress toward objectives (external rewards,
model improvements)

IOWA STATE UNIVERSITY
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Artificial evolution of neural network motor controllers
Complex multi-dimensional control with little human feedback
Video: standing http://video.google.com/videoplay?docid=-2510462304066175045

Video: JUMPINQG nttp:/video.google.comivideoplay?docid=1002062030982551847

. . [Ivi i ? id=-
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luman Computer Interaction

Previous Work

%

1" Verve

General Purpose Agents

Average Reward Per Time Step

Trlal 41

BRLE £/ /PN

MS thesis: “Verve” reinforcement learning architecture and
implementation

Same general motivation: to create a software brain
More heuristic vs. information theoretic methods used here
Limited to low-dimensional sensors, discrete actions

Video: pole balancing learned from simple reinforcements

http://video.google.com/videoplay?docid=8226600171334714429 IOWA ﬂ; ATE Urjﬁ?ﬁﬁ




Sapience Architecture

« Real-valued input/output arrays
« External and internal (curiosity) reinforcement mechanisms
« 5 internal components

Sensorimotor Belief Network: internal model of the world,
inspired by sensory and motor cortex

Sequential Memory: sequential predictions, inspired by
hippocampus

Serial Decision Maker: choose actions based on reinforcement,
inspired by basal ganglia

Parallel Decision Memory: automates well-learned actions,
inspired by cerebellum

Working Memory: extends action set w/ short-term memory,
inspired by prefrontal cortex

IOWA STATE UNIVERSITY
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Human Computer Interaction

Sapience Cognitive Architecture
high-level organization
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Sensorimotor Belief Network

Brain inspiration: sensory and motor cortex

Receives sensory input data, produces motor control outputs
Probabilistic model of the external world (Bayesian inference)
Learned symbolic representation of data “causes”

Computes model improvements (used for curiosity rewards)

Provides a “context representation” for decision making
components

Can be influenced/biased by other components

IOWA STATE UNIVERSITY
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Sensorimotor Belief Network
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Sensorimotor Belief Network

Bayesian Inference
P(C) P(E|C)

P(CIE) = =55

postertor o< prior X likelthood

C: discrete “class” variable (set of causes/hypotheses)
E: continuous “evidence” vector variable (data samples)

P(C|E): posterior probability of each class being the cause of the
given evidence/data

P(C): prior probability of each class for any given data sample

P(E|C): probability of seeing the current data sample assuming a
certain value for C (aka the “likelihood”)

P(E): prior probability of seeing the data sample (ignored, used
only for normalization)

IOWA STATE UNIVERSITY
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Sensorimotor Belief Network

Symbolic Representation

N-dimensional probability vector * Represent data pOintS

(0,0,0,0,0,0,0,0.4,0.6,0,0,0) in Euclidean Space

» Classify with d-
dimensional Gaussian
kernels (kernel mixture
model)

 kMER algorithm learns
kernel center, radius
(unsupervised,
infornax-based)

d-dimensional ¢ For each Samp|e,
input sample
01,08, -0.3) compute PMF over
kernels/classes/
causes/hypotheses
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Sensorimotor Belief Network

Bayesian Network
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Curse of dimensionality:
machine learning gets
harder for high-
dimensional data

Subdivide data space into
small-dimensional
subsets

Combine results with
Bayesian network
(distributed Bayesian
inference)

Demo: natural images

IOWA ST, ATE UNIVERSITY
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Sensorimotor Belief Network

Model Improvements, Curiosity

P(i)

Dk1(P|Q) = ZP z)log o0

Measure the “divergence” (in bits/nats) between the prior
and posterior distributions

Dy (posterior||prior) = info gain from new data =
improvement to the world model

Total model improvement: average info gain over all nodes
In Bayesian hierarchy

Use model improvement as internal curiosity reward




Sensorimotor Belief Network

Generating Motor Outputs

In hierararchical Bayesian network, top-down priors
represent predictions for level below

Lowest level: priors are raw data predictions

For motor modalities, use these “predictions” as motor
control signals

Example

— Proprioceptive inputs: joint angle, stiffness

— Motor outputs: desired joint angle, desired stiffness

— Low-level spring-like servo controllers compute actual
forces

IOWA STATE UNIVERSITY
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Sensorimotor Belief Network

Bootstrapped Motor Learning

Must ensure a thorough initial sampling of motor space
Otherwise, degenerate learned motor representation

Reflex system: simple random neural network (sensors
to effectors)

Initially full reflex-based control, smoothly transition to
voluntary control

IOWA STATE UNIVERSITY
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Human Computer Interaction

Sapience Cognitive Architecture
high-level organization
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Sequential Memory

Brain inspiration: hippocampus
Makes sequential predictions

“Dynamic reconstruction” — learning to model and predict
complex temporal signals

Models short-term memory trace with tapped delay line array
Supervised learning neural network predictor

Provides prior distribution to multimodal root node in
Bayesian network

IOWA STATE UNIVERSITY
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Human Computer Interaction
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Human Computer Interaction

Sapience Cognitive Architecture
high-level organization
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Serial Decision Maker

« Brain inspiration: basal ganglia

» Learns context-dependent value

« Learns context-dependent actions

« Chooses from motor actions, working memory actions

* Uses PVLV (primary value learned value) model of
midbrain dopamine activity

« “Dopamine” signal reinforces action selection

IOWA STATE UNIVERSITY
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Human Computer Interaction

Serial Decision Maker
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Sapience Cognitive Architecture
high-level organization

senso
inputswr

sﬁl“ﬂ'::::’al V] Sensorimotor Belief Network

hippocampus

+
sensory + motor cortex motor outputs

external reinforcement

Working : Parallel
Memory Serial Decision
prefrontal Decision Memory

cortex Maker cerebellum
basal ganglia

©® 2009 Tyler Streeter



Parallel Decision Memory

Brain inspiration: cerebellum
Essentially same inputs/outputs as Serial Decision Maker

Automates Serial Decision Maker’s actions, freeing it to
focus on novel tasks

Storage area for well-learned decisions
Supervised learning neural networks
Parallel outputs drive multiple targets simultaneously

Video: computational model of cerebellum learns to
automate parallel muscle control

http://video.google.com/videoplay?docid=3602661334569424179

IOWA STATE UNIVERSITY
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Human Computer Interaction

Parallel Decision Memory

Working Memory
state

Sensorimotor

Belief Network
state context

current Serial
Decision Maker

action
Sensorimotor
Belief Network
influence working memo
(motor only) automation Utinatan
‘ network network

<

Working Memory
inflience




Human Computer Interaction

Sapience Cognitive Architecture
high-level organization
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Working Memory

Brain inspiration: prefrontal cortex

Temporary data storage

Discrete set of memory cells

Working memory actions: read/write

Read: let contents influence other components
Write: update contents with new values
Reinforcement learning of working memory control

Feedback loop with Serial Decision Maker: powerful
mechanism for general program learning

IOWA STATE UNIVERSITY
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Human Computer Interaction
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Completed Work

Complete, implementable architecture design

Initial architecture implementation

— C++ library w/ Python bindings for Linux, OS X, Windows
— Built-in CPU utilization measurements

— Automatic thread-based parallelization

Real-time probe tool

Simulation environment for experimentation

Over 1 MB of source code (uncompressed text files)

IOWA STATE UNIVERSITY
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Completed Work

thm Test Programs

Algor

IOWA STATE UNIVERSITY
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Human Computer Interaction

Completed Work
Real-Time Probe
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Probe tool runs in parallel with
any application

Real-time plots of many
internal variables (information
theoretic values, CPU
utilization, etc.)

Visualization of learned internal
representations

Tight experimental feedback

loop — watch internal changes
in real-time while mteractlng n,
with the system
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Completed Work
Simulation Environment

24 degree-of-freedom arm
Shoulder fixed in space

Proprioceptive sensors (joint
angle, stiffness)

Tactile sensors

Vision sensor (monocular,
monochrome)

Servo motors (controls desired
joint angle, stiffness; 1 per DOF)

Adjustable sensor resolution
(input dimensionality)

Demo: arm simulation w/ prob&

IOWA STATE UNIVERSITY
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Completed Work

CPU Timing Test
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Elapsed Real Time (s)

32x32 visual inputs

42 proprioceptive inputs
42 motor outputs
Target: update @ 10 Hz

Result: <50ms needed
per update

Each second: 500ms for
Sapience, 500ms for
simulation

IOWA STATE UNIVERSITY
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Proposed Experiment 1

Passive Information Gain

Question: With no active motor control (reflexes only),
what is the baseline expected rate of information gain?

Vision inputs only
Arm driven by external reflex system
Plot info gain over time (model improvement rate)

Many other possible plots:

— With vs. without hierarchy

— More vs. fewer kernels

— Lower vs. higher resolution vision

IOWA STATE UNIVERSITY
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Proposed Experiment 2

Active Information Gain

Question: How much does curiosity help? i.e., with active
curiosity-driven motor control enabled, by how much does
the rate of information gain increase?

Vision inputs, proprioceptive inputs, motor outputs

Similar setup as before, but transition from reflex control to
full active control

Reinforcements: internal curiosity rewards for model
Improvements

Plot info gain over time (should be greater than passive
observation)

IOWA STATE UNIVERSITY
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Human Com puter Interaction

Proposed Experiment 3

External Reward Acquisition

Question: Can the system reliably
learn to achieve externally-
provided goals in a high-
dimensional sensorimotor space?

Reaching task: target hand
positions in space

Internal curiosity rewards

External rewards for touching
targets

Measure progress as the reward
acquisition rate over time

Performance with curiosity should
be better than without

120 [ [ [ I
RL

RL + Planning

RL + Planning + Curiosity

100 —

Reward Sum

0O 10 20 30 40 50 60 70 80

Trial

Prior work: curiosity helps acquire
more external rewards
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