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ABSTRACT 
 Intelligent agents are becoming increasingly important in 

our society in applications as diverse as house cleaning robots, 

computer-controlled opponents in video games, unmanned 

aerial combat vehicles, entertainment robots, and autonomous 

explorers in outer space.  However, the broader adoption of 

intelligent agents is often hindered by their limited adaptability 

to new tasks; when conditions change slightly, agents may 

quickly become confused.  Additionally, a substantial 

engineering effort is required to design an agent for each new 

task.  This paper presents an adaptable, general purpose 

intelligent agent toolkit based on reinforcement learning (RL), 

an approach with strong mathematical foundations and 

intriguing biological implications.  RL algorithms are powerful 

because of their generality: agents simply receive a scalar 

reward value representing success or failure, which greatly 

simplifies the agent design process.  Furthermore, these 

algorithms can be combined with other techniques (e.g., 

planning from a learned internal model) to improve learning 

efficiency.  The design and implementation of an open source 

RL toolkit is presented here as a step towards the goal of 

general purpose agents.  Experimental results show learning 

performance on several tasks, including two physical control 

problems. 

 

1 INTRODUCTION 
 Intelligent agents today are primitive compared to human 

intelligence.  Nevertheless, they are finding uses everywhere.  

They help diagnose diseases, they aid in making stock market 

predictions, they provide entertainment as physical robots and 

as opponents in video games, they perform dangerous military 

operations, they handle household chores, they detect credit 

card fraud, they explore other planets, and they construct 

automobiles. 

 Machine intelligence is probably one of the most important 

technologies to develop.  In general, any human endeavor that 

could benefit from additional brain power will benefit from 

improved machine intelligence.  On a grand scale, having 

agents with human-like intelligence would amplify our 

progress in any scientific field.  On a more personal level, we 

could replace the user interfaces on our personal computers 

with intelligent assistants that manage menial tasks for us. 

 The major problem with current intelligent agents is that 

they lack flexibility.  They are usually designed to operate 

under certain conditions for a specific purpose.  This fact 

prevents them from adapting to new environments.  It also 

makes the design process laborious because each agent is 

usually created from scratch. 

 A fairly new approach is that of creating agents to learn 

from direct interaction with their environments.  No knowledge 

is bestowed from the agent’s creators; everything must be 

learned through firsthand experience.  This kind of agent must 

go through a developmental phase where it spends most of its 

time exploring, learning about its world’s predictable 

properties.  One of the major hypotheses of this approach is 

that these agents will be more adaptable and effective at solving 

complex problems.  We argue here that reinforcement learning 

is a practical way to design and implement this type of agent. 

 Reinforcement learning (RL) is the problem of choosing 

the optimal action in a given situation in order to maximize 

future rewards [1].  Figure 1 shows the general situation with a 

set of abstract components representing an agent and its 

environment.  The agent performs a context-dependent action 
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which usually has some effect on the environment.  Based on 

that action, the environment provides the agent with new 

sensory inputs (i.e. an observation) and a reward signal.  

Positive reward signals positively reinforce the actions that led 

to the rewarding situation, making them more likely to be 

performed in the future.  Similarly, negative reward signals 

make the recent actions less likely to be performed. 

 

 
Figure 1: A typical RL setup, including an environment that 

provides observations and rewards and an agent that 
responds with actions. 

 

 RL is a trial-and-error process.  The only way for an agent 

to improve its performance is to take an action and experience 

the resulting reward (or lack thereof).  This approach is very 

general.  Almost any problem can be expressed as an RL 

problem as long as the goal can be represented as a scalar 

reward value.  Thus, algorithms designed to solve RL problems 

are applicable to a wide variety of tasks. 

 When trying to solve RL problems, a few major problems 

arise.  If an agent receives a reward after a long sequence of 

actions, how does it know which actions to reinforce?  For 

example, say we are training a dog to roll over on command, 

and we reward him only when successfully finishing the task.  

The dog must learn to reinforce the initial action of lying down 

even though he does not receive a reward until after rolling 

over and standing up again.  Another problem is that of 

knowing when to try new actions and when to choose those 

that have been most successful in the past.   

 Fortunately, a set of powerful RL algorithms already exist.  

They can successfully deal with the problems mentioned above 

and more.  Combined with other techniques (e.g. function 

approximation, planning), the core algorithms can scale to 

more complicated problem domains.  However, even with the 

tools that are available, it is not yet clear which ones are best 

and how they should be combined. 

 This paper presents a summary of some of the algorithms 

available for solving RL problems and shows how they can be 

combined effectively to create a general purpose solution.  The 

ideas discussed here are implemented as an Open Source 

software library [2] designed to give application developers a 

useful tool for creating intelligent learning agents.  This tool 

can be applied to a variety of problems, ranging from simple 

simulated agents in discrete grid worlds to real robots acting in 

the physical world.  The implementation and results are 

discussed more fully in [3]. 

 There are existing RL software tools [4, 5, 6] available that 

provide general frameworks for experimenting with different 

algorithms.  Other tools [7] are useful for teaching RL concepts 

without having to write software.  However, there is still a need 

for an “out-of-the-box” solution for non-researchers.  Many 

developers could use a general purpose learning tool without 

needing to understand the underlying complexity.  This should 

help promote the use of RL algorithms in more diverse 

applications. 

 The next section discusses reinforcement learning in more 

detail.  It covers some of the specific challenges involved and 

presents a general purpose solution.  Section 3 introduces the 

Verve software library, an implementation of the ideas 

discussed in section 2.  Section 4 presents a series of 

experiments that test Verve’s effectiveness.  Section 5 

concludes the paper with a summary and a list of contributions. 

 

2 RL CHALLENGES AND SOLUTIONS 
 RL problems present us with several challenges.  One 

challenge described earlier is known as the “temporal credit 

assignment” problem, i.e. deciding which of a sequence of 

previous actions led to a reward.  A related problem is the 

“structural credit assignment problem,” the problem of 

knowing which internal parts of the agent need to be 

reinforced.  This chapter highlights these and other challenges 

we face when designing general purpose RL agents.  Some of 

these challenges are fundamental to the basic functioning of a 

reinforcement learner, while others help make the core 

algorithms more practical (i.e. scaleable to large state spaces).  

We will not cover all possible aspects of the various issues and 

algorithms; we will focus on the most pertinent information for 

the goals of this paper.  For more information, see [1]. 

 Note that the reward signal does not specify how to make 

adjustments to improve behavior; it is simply a coarse 

performance evaluation (i.e. success or failure).  Essentially, 

reinforcements received after performing an action increase the 

probability that the action will be repeated. 

 Two of the main internal components of most RL agents 

are: 1) a value function which maps states to value estimations, 

and 2) a policy which maps states to actions [1].  Having the 

value function and policy in separate memory structures is 

sometimes called an “actor-critic” architecture: the policy is an 

“actor” that continually performs actions, and the value 

function is part of a “critic” system that reinforces the actor 

using prediction errors. 

 

2.1 Temporal Credit Assignment 
 While an agent is interacting with its environment, rewards 

are usually received discontinuously.  The agent might move 
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through hundreds of different states, receiving zero reward, 

before finally reaching its goal state where it receives a positive 

reward signal.  Without a sophisticated way to process rewards, 

the agent can only reinforce actions taken immediately before 

receiving the reward. 

 A more fundamental question is: How does an agent know 

which states are more valuable than others when the reward is 

actually only present in a single state?  One answer is that the 

agent must learn the value of each state through direct 

experience.  There is usually more “value” in being close to the 

reward than being far away, both spatially and temporally.  This 

information is not present in the environment; it must be 

learned.  Thus, an effective intermediate step in solving an RL 

task is to learn a “value function.”  A value function (more 

specifically, a state value function) is a mapping of states to 

values.  Given some state, the value function returns the 

(usually estimated) value associated with being in that state.  

(Another type of value function is an “action value function” 

that represents the value of taking an action in a specific state.  

Here, we will only focus on state value functions.)  The value 

function transforms the discontinuous primary reward into a 

continuous internal signal.  It is helpful to think of the agent 

playing the “hot-or-cold” game, where the rewards are “hot.”  

The learned value function tells the agent whether it is in a hot 

or cold state.  At first the value function might be wildly 

inaccurate, but it should improve through experience. 

 Two main questions arise at this point: 1) how does the 

agent learn an accurate value function?, and 2) once the value 

function is learned, how should the agent use it? 

 It is important to define what we mean by the “value” of a 

state.  The usual meaning is the expected sum of future 

rewards, i.e. how much reward we can expect to receive from 

this state forward.  Thus, the value of a state is the reward 

received at that state plus the sum of rewards that can be 

expected after that point.  One major problem with this 

approach is that the future sum of rewards could be infinitely 

large.  We can alleviate this by discounting rewards received 

farther into the future. 

 Assuming we have a complete model of the environment 

(including state transitions and rewards), we can search through 

all possible states and compute the value of each.  Starting at an 

initial state, we iterate through every possible action and 

compute the next states.  From each of those states, we iterate 

through every possible action and compute the next states…  

(This type of exhaustive branching is similar to how most 

computer chess programs operate.)  Whenever we find a 

reward, we “backup” its value to previous states.  This 

effectively spreads out the value from the reward to the states 

leading up to it. 

 But what if we do not have a complete model of the 

environment?  This is a valid concern.  Most of the time we 

assume the agent has no initial knowledge of its environment.  

Another method for learning a value function is by taking 

samples from actual experience.  Without any prior knowledge 

of its environment, an agent can interact with it directly, 

keeping track of the average rewards received after being in 

each state. 

 The first method described above is called dynamic 

programming.  It has a strong mathematical foundation, but it 

requires a full model of the environment, making it impractical 

for agents operating in new territory.  The second method is the 

Monte Carlo approach.  It does not require any kind of 

environment model, but it is difficult to use incrementally 

(usually all learning updates occur at the end of a long 

sequence of events).  See [1] for a more complete coverage of 

both methods. 

 A fairly new method which has some of the benefits of 

dynamic programming and Monte Carlo methods is called 

temporal difference learning [1].  It does not require an 

environment model (though it can still benefit from such a 

model), and it can perform incremental updates at every time 

step, so it has advantages over both dynamic programming and 

Monte Carlo methods.  These are necessary requirements in 

most on-line learning scenarios where the agent starts with no 

knowledge of the world.  “Temporal difference” refers to the 

fact that the goal is to learn to predict the difference in value 

between successive time steps.  Agents using temporal 

difference learn an estimate from an estimate; they “bootstrap” 

the learning process by starting with an initial (usually random) 

estimated value function and incrementally improve its 

accuracy based on the previous estimate.   

 We will now derive the basic equation for one-step 

temporal difference learning (i.e. TD(0)).  Our initial 

assumption is the following: 

 

V(st) = rt + rt+1 + rt+2 + …   (2-1) 

 

where V(st) is the value of the current state.  We assume that the 

value of the current state, st, is equal to the current reward, rt, 

plus the rewards received at all times after time t.  To avoid the 

possibility of an infinite sum of future rewards, we discount 

future rewards exponentially with a discounting constant, γ.  

This makes the value of immediate rewards greater than the 

current value of rewards received later.  The following reflects 

this change: 

 

V(st) = rt + γrt+1 + γ2rt+2 + γ3rt+3 + … (2-2) 

 

 We can simplify these ideas to get the following form: 

 

V(st) = rt + γV(st+1)  (2-3) 

 

In other words… 

 

0 = rt + γV(st+1) - V(st)  (2-4) 

 

Of course, this assumes that the value function V is completely 

accurate.  This will not always be true.  When the value 

estimation is not correct, we have the following scenario: 
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δt = rt + γV(st+1) - V(st)  (2-5) 

 

where δt is the temporal difference (TD) error.  This error is 

positive when the reward is higher than expected, and it is 

negative when the reward is lower than expected.  Essentially, 

the TD error provides the agent with more informative 

feedback than the primary reward signal itself. 

 The TD error value can be used to update the value 

function to make it more accurate in the future.  The following 

update equation shows the basic idea: 

 

V(st) ← V(st) + ηvalue δt  (2-6) 

 

where ηvalue is the value function learning rate.  This equation 

updates the value of the current state using the current 

prediction error.  When the TD error is zero (implying a perfect 

value estimation), no changes occur. 

 Now that we know how to learn the value function, we can 

use it to reinforce actions.  More importantly, we can reinforce 

actions performed at every step, not just when receiving 

rewards.  This is achieved by using the same temporal 

difference error used to train the value function.  If the agent 

takes an action, and the following TD error is positive, the 

value of the new state is higher than expected, so we positively 

reinforce that action.  Similarly, we negatively reinforce actions 

that result in negative prediction errors.  To “reinforce an 

action,” we simply adjust the action selection probability of the 

previous action in the direction of the error.  For example, if 

things were better than expected, the positive TD error 

increases the previous action’s selection probability. 

 Over time the agent’s estimated value function and policy 

grow closer to the ideal value function and policy.  

Interestingly, the two components depend on each other: the 

value of a state is dependent upon the actions being chosen, 

and the policy’s actions are reinforced based on the value 

function’s estimates. 

 

2.2 Structural Credit Assignment 
 Now that we know when to reinforce actions, how do we 

know which ones to reinforce?  Which structural parts of the 

agent’s value function and policy should be affected when there 

is a non-zero prediction error?  This is known as the “structural 

credit assignment” problem. 

 The naïve approach is to update the value of the previous 

state and reinforce the previously chosen action, i.e. the 1-step 

TD(0) method introduced in the previous section.  However, 

we can do better.  Each value estimation and action can use a 

separate eligibility trace, e, whose purpose is to track structural 

components (e.g. connection weights in a neural network) that 

are eligible for modification [1].  They increase when the 

corresponding value estimation or action is used, and they 

decrease exponentially over time.  The assumption is that state 

value estimations and actions performed just prior to a non-

zero temporal difference error were most likely to contribute to 

that error. 

 Each eligibility trace is updated on every time step.  The 

traces for the current value estimation and action are increased 

(e.g. set equal to 1).  All other traces are exponentially 

decreased as follows: 

 

e(st) ← γλe(st)   (2-7) 

 

where λ is a decay constant that ranges from 0 to 1.  When TD 

errors occur, they are applied to state values and actions in 

proportion to their eligibility traces.  We use the same TD error 

(δt) equation as before, but the value function update equation 

now includes eligibility traces.  The following shows the new 

value function update: 

 

V(st) ← V(st) + ηvalue δte(st)  (2-8) 

 

 Temporal difference learning with eligibility traces is 

called TD(λ).  Theoretically, eligibility traces provide a link 

between temporal difference learning and Monte Carlo 

methods.  When λ = 0 we get the simple one-step TD(0) rule, 

but as λ approaches 1, TD(λ) becomes more similar to Monte 

Carlo learning since it keeps track of all previous states and 

actions.  TD(1), however, is more general than Monte Carlo 

because it allows incremental learning.  The main result we 

achieve by using eligibility traces is that we can perform 

structural credit assignment more effectively by targeting 

specific (structural) parts of the value function and policy when 

performing updates. 

 

2.3 Exploration vs. Exploitation 
 The exploration vs. exploitation dilemma is the problem of 

deciding when to use previous knowledge to guide actions and 

when to take exploratory actions, with the hope of finding 

something better.  There is a definite tradeoff here because both 

exploration and exploitation are necessary at times.  Early in 

the learning process the agent needs to explore to find out 

which actions are ideal in different situations.  Even “mature” 

agents need to explore if they live in constantly-changing 

environments.  Exploitation is equally essential; an agent that 

always takes exploratory (i.e. random) actions will never 

improve.  Often it is important to use the current best policy. 

 Currently there are only a few standard solutions to this 

problem.  One is the “ε-greedy” method [1].  Most of the time, 

the agent chooses its best known action (according to its 

learned policy).  Every once in a while (with probability ε), it 

instead chooses a random action.  Another method is the 

“softmax” action selection method [1].  Instead of choosing 

from among all actions equally during an exploratory move, 

softmax methods assign each action a different probability of 

being chosen at each state.  The best actions are given higher 

probabilities than poor actions.  These probabilities become the 

parameters that are adjusted during policy learning. 
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2.4 Large, Continuous State Spaces 
 The methods we have covered up to this point solve RL 

problems effectively, but in order for them to be practical in 

real situations, they need compact state representations.  The 

simplest methods assume that each state is represented as a 

single entry in a table.  This is obviously impractical for agents 

operating in large, continuous state spaces.  A robot with only 

10 continuous sensors, each one discretized into 10 different 

values, would require a table of 1010 unique entries (i.e. states).  

There are way too many states in this case for the agent to test 

and evaluate each one individually. 

 The solution to this problem is to represent states more 

compactly with function approximation.  Instead of keeping 

track of each unique state separately, we seek to find a function 

that approximates the state space with a small number of 

adjustable parameters.  The number of parameters is usually 

much smaller than the number of unique states.  The downside 

is that each state is never represented exactly since we are only 

approximating the state space.  Function approximation also 

allows generalization to unseen data.  This feature is important 

because an agent in a continuous environment will probably 

never experience the same exact state twice.  Using an 

approximate function of the state space, it can sample a few 

states and generalize about the rest. 

 It is important to note that temporal difference learning 

with linear function approximation will provably converge to 

the optimal solution.  The convergence proofs do have a few 

other requirements, such as using a learning rate that decreases 

over time (here we use a constant learning rate and do not 

worry about achieving the exact optimal solution) and other 

assumptions that do not affect the discussion in this paper.  

Convergence is still questionable with nonlinear function 

approximation, such as backpropagation with multilayer neural 

networks.  There is only one optimal solution in the linear case, 

so we need not worry about converging to local maxima.  For 

these reasons we will focus our discussion on linear 

representations. 

 Now the basic problem is to represent the value function 

and policy as linear combinations of the states.  The problem 

with doing this in general is that linear representations, such as 

single layer neural networks, are fundamentally limited in what 

they can represent.  Specifically, they can only represent 

problems that are linearly separable.  This excludes certain 

problems (like the classic XOR problem).  See [8] for a more 

detailed description of neural networks and linear separability. 

One way to get around these limitations and still use 

methods like linear neural networks is to augment the state 

representation.  Instead of learning a linear combination of the 

sensory inputs directly, it is better to generate a set of more 

complex features that represent various combinations of the 

sensory inputs.  For example, if all inputs are discrete values, 

we could simply enumerate all possible combinations of the 

inputs, resulting in an exhaustive list of states. 

 In most cases we will have continuous input values (e.g. 

readings from thermometers, accelerometers, cameras, etc.).  To 

form a set of features in continuous state spaces, we can use 

radial basis functions (RBFs) [8], which allow localized 

learning and some generalization.  This method uses a set of 

(usually Gaussian-shaped) curves to approximate a function in 

any number of dimensions.  Each RBF is given a position in 

the input space.  It responds to input data points based on its 

Euclidean distance from the points.  The activation function for 

Gaussian RBFs is the following: 
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where a is the activation level (between 0 and 1), i is the input 

data point, c is the RBF’s center position, and σ is the RBF’s 

“width” (i.e. the distance of one standard deviation from the 

center).  The quantity in the numerator of the exponent 

represents the Euclidean distance from the RBF center to the 

input data point, which could be in a space of any number of 

dimensions.  The collective effect of an array of RBFs is 

demonstrated in Figure 2.  A single continuous value, even in 

1-dimensional space, can be represented with an array of RBFs.  

In biological systems this is similar to population coding: a 

given quantity is encoded in the combination of activation 

levels from a population of neurons. 

  

 
Figure 2: An array of radial basis functions in 2-dimensional 
space representing an input data point.  Each RBF here is a 

separate circle with a diameter proportional to the RBF’s 
activation level.  (The more distant RBFs would actually 

have a near-zero diameter.) 

 

 When representing a continuous value, only a few RBFs 

near the value are active.  This allows localized learning, which 

is important for learning function approximations without 

catastrophic interference (i.e. changing a single parameter does 

not affect the entire approximation). 

 In the general case we can create an exhaustive array of 

RBFs that combines all sensory inputs into a single, massive 

state representation.  Any given point in this space would 

represent a unique combination of sensory inputs, 

approximated by a set of RBFs in close proximity.  Every RBF 
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in this array is essentially a complex feature (e.g. a feature for a 

car-driving agent could represent “steering angle = 0.3 deg, 

velocity = 105 km/hr, 12 liters of fuel left, 58 km to the next 

gas station, 103 m following distance from the car ahead”).  If 

we had some knowledge of the task being performed, we could 

hand-design features to fit the task.  We may not need to 

combine all sensory inputs; we could just combine those that 

are highly dependent, in which case there would be separate 

RBF arrays.  Since we are designing a general purpose system, 

this is not an option: we must combine all sensory inputs.  The 

main drawback of this approach is that the runtime 

performance suffers.  Computing the RBF state representation 

grows slower exponentially with the number of inputs being 

combined because the total number of RBFs is equal to k
n, 

where k is a constant, and n is the number of inputs.  It might 

help to start with the exhaustive representation and later 

remove those RBFs representing input combinations that rarely 

get used.  This may be what occurs in biological brains: we 

start out with many more connections than we need, and we 

lose connections that rarely get used. 

 Figure 3 shows our agent design.  It uses an RBF state 

representation with linear neural networks for the value 

function and policy, which are trained by the TD error signal. 

 

 
Figure 3: An agent that processes incoming observations 
into an internal state representation which provides more 

informative features.  This agent uses linear neural 
networks to represent the value function and policy, which 

are trained by the TD error signal. 

 

3 IMPLEMENTATION 
 Now we will compile many of the ideas from the previous 

section into a concrete software implementation.  The goal here 

is to provide a practical tool for use in real applications.  Its 

main intended users include engineers, roboticists, and game 

developers that need an out-of-the-box solution for their 

learning tasks.  This tool, available online [2], is distributed as 

a free, Open Source software library, which provides several 

benefits: 1) the “free” aspect will help the software circulate 

faster and gain more exposure, and 2) the Open Source aspect 

enables users to study a concrete RL implementation in detail.  

It also functions as a platform for future research.  For 

example, future work includes hierarchical data structures for 

states and actions (to improve scalability) and curiosity-driven 

exploration. 

 

3.1 The Verve Library 
 Verve is a cross-platform, object-oriented library written in 

C++.  It is built as a shared library (i.e. a “.dll” file in Windows, 

or a “.so” file in UNIX).  It is organized as a set of classes, the 

main one being the Agent class.  The source code itself is 

heavily commented and unit tested.  The downloadable 

distribution includes Python bindings and a set of example 

applications that validate the library’s usefulness and provide 

example source code. 

 Typically, users create an AgentDescriptor object, which 

describes the general structure of an Agent, and set its various 

parameters (e.g. number of sensors, number of actions, sensor 

resolution, whether planning is enabled, etc.).  Then they create 

an Agent object from the AgentDescriptor.  Another way to 

create an Agent is by loading a saved Agent from an XML file. 

 Saving and loading Agents to and from XML files 

provides several benefits.  Potentially long training sessions 

(lasting several days) can be saved at regular intervals to 

protect against power failures.  Also, once an Agent has 

reached a desirable level of proficiency (i.e. has finished its 

training phase), it can be stored for practical use.  In this case it 

can be helpful to disable learning once training is complete.  

This saves computational resources because the entire learning 

system is ignored (only the policy is used), and it enables more 

repeatable behavior.   

 To increase immediate usability, all free parameters use 

default values that were found experimentally to be useful in a 

variety of learning tasks.  Adjusting some parameters manually 

may improve learning performance, but this effect is more 

noticeable on simpler tasks that do not require much 

exploration. 

 Most of the features of this library are designed to solve 

the problems introduced in the previous section.  The general 

architecture is same as the one developed above.  The value 

function and policy are stored as separate data structures (i.e. 

an actor-critic architecture) approximated with linear neural 

networks and are trained through temporal difference learning.  

The state representation uses a dynamically-growing RBF 

system to combine sensory inputs.  Actions are chosen using a 

roulette/softmax action selection scheme which maintains 

separate selection probabilities for each action.  Agents can use 

any number of discrete and continuous sensors (discrete 

sensors take an index representing one of several distinct 

values, and continuous sensors take any real value between -1 

and 1).  Additionally, Verve agents incorporate more advanced 

features described in [3], including an internal uncertainty 

estimation, a learned predictive model for planning, and a 

curiosity drive to help improve the predictive model. 
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 One interesting detail is that a few free parameters are 

specified as time constants.  This stems from the fact that 

Agents are updated in real time (i.e. each update step takes a 

time delta that specifies how much time has elapsed since the 

previous update).  The usual way of setting a neural network 

learning rate parameter, for example, is by using a constant 

value that affects how far each weight is adjusted per update.  

A learning rate of 0.1 attempts to reduce the overall error by 

10% per update.  However, since each update in our case 

represents a certain amount of real time, we would rather let 

users set how much error is reduced per second.  Time 

constants let us specify how long it takes (in seconds) for errors 

to be reduced by 63%.  For example, a learning rate time 

constant of 0.1 s attempts to reduce errors to 37% of their 

initial values after 0.1 s, regardless of size of the Agent update 

time delta. 

 For more specific details on the implementation (e.g., 

neural network learning rules), including the advanced 

functionality not described in this paper (e.g., planning with 

learned predictive models, curiosity), see [3]. 

 

3.2 A Code Sample 
 This section shows C++ source code for a generic Agent 

training application.  The purpose of this is to give a tangible 

example of how Verve Agents are used in practice.  The first 

section of the code here defines an AgentDescriptor and creates 

an Agent and an Observation from the AgentDescriptor.  The 

second part is a loop that continually computes the current 

Observation and reward, updates the Agent, and applies the 

Agent’s chosen action to the environment. 

 
// Define an AgentDescriptor. 

verve::AgentDescriptor agentDesc; 

agentDesc.addDiscreteSensor(4); // Use 4 possible values. 

agentDesc.addContinuousSensor(); 

agentDesc.addContinuousSensor(); 

agentDesc.setContinuousSensorResolution(10); 

agentDesc.setNumOutputs(3); // Use 3 actions. 

 

// Create the Agent and an Observation initialized  

// to fit this Agent. 

verve::Agent agent(agentDesc); 

verve::Observation obs; 

obs.init(agent); 

 

// Set the initial state of the world. 

initEnvironment(); 

 

// Loop forever (or until some desired learning  

// performance is achieved). 

while (1) 

{ 

  // Set the Agent and environment update  

  // rate to 10 Hz. 

  verve::real dt = 0.1; 

 

  // Update the Observation based on the current  

  // state of the world.  Each sensor is  

  // accessed via an index. 

  obs.setDiscreteValue(0, computeDiscreteInput()); 

  obs.setContinuousValue(0, computeContinuousInput0()); 

  obs.setContinuousValue(1, computeContinuousInput1()); 

 

  // Compute the current reward, which is  

  // application-dependent. 

  verve::real reward = computeReward(); 

 

  // Update the Agent with the Observation and reward. 

  unsigned int action = agent.update(reward, obs, dt); 

   

  // Apply the chosen action to the environment. 

  switch(action) 

  { 

    case 0: 

      performAction0(); 

      break; 

    case 1: 

      performAction1(); 

      break; 

    case 2: 

      performAction2(); 

      break; 

    default: 

      break; 

  } 

 

  // Simulate the environment ahead by 'dt' seconds. 

  updateEnvironment(dt); 

} 

 

4 EXPERIMENTAL RESULTS 
 Here we provide a set of experimental results.  The 

purpose of these experiments is to validate Verve’s 

effectiveness in a variety of tasks and to demonstrate some of 

the tradeoffs involved in practice.  We test agents in a simple 

discrete maze environment and on two continuous control 

tasks: the pendulum swing-up task and the cart-pole/inverted 

pendulum task.  In each case the task is specified simply by 

giving the agent a scalar reward value.  The control policies are 

learned automatically. 

 

4.1 2D Maze Task 
 This task tests an agent in a simple 2D maze environment 

(see Figure 4).  There is a single start state and goal state which 

are always in the same locations.  The agent receives -1 reward 

everywhere except the goal state where it receives a reward of 

1.  It can sense the robot’s x and y position, and it can move 

left, right, up, down, or do nothing.  Additionally, the agent 

cannot cross interior wall boundaries. The experiment was run 

twice: once using discrete sensors, and once using continuous 

(i.e. radial basis function) sensors.  Figure 5 shows the agent’s 

learning performance. 

 

 
Figure 4: The layout of the environment in the 2D maze #1 

task. 
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Figure 5: Learning performance on the 2D maze #1 task 

using the following parameters: policy learning multiplier = 
1, position input discretization (for discrete inputs plot 

only) = 10, continuous sensor resolution (for continuous 
inputs plot only) = 15, number of runs averaged = 50. 

 

 Figure 6 shows the agent’s learned value function over 

time.  These images represent the agent’s learned value of each 

state.  (Lighter areas correspond to places that are more 

valueable to the agent.)  In both the discrete and continuous 

cases it is easy to see the structure of the maze (especially the 

wall barrier) in the final value function images. 

 

 
Figure 6: Learned value functions observed at the end of 
the 2

nd
, 5

th
, 10

th
, and 100

th
 trials of the 2D maze #1 task, 

tested with discrete (top) and continuous (bottom) sensors.  
The following parameters were used: policy learning 

multiplier = 1, position input discretization (for the discrete 
sensors) = 10, continuous sensor resolution (for the 

continuous sensors) = 15. 

 

4.2 Physical Control Tasks 
 We now cover results from two physical control tasks.  The 

agents here must learn to apply appropriate forces in order to 

control physically simulated systems.  The core physics 

simulation software used here is Open Dynamics Engine [9].  

To simplify the process of constructing physically simulated 

environments, we used Open Physics Abstraction Layer [10].  

OPAL wraps ODE with a high-level interface and provides 

developers with intuitive objects (e.g. solids, joints, motors, 

and sensors) and XML serialization.  Although the experiments 

in this section use very minimal physical environments, OPAL 

and ODE are powerful enough to manage complex worlds with 

expansive terrains, ground and air vehicles, legged robots, etc. 

 All experiments here were simulated with gravity set to 

9.81 m/s2.  One of the more important parameters that must be 

set when running a physics simulation is the duration of each 

simulation step (i.e. the simulation step size).  This should 

always be smaller than the Verve agent update step size.  This 

is because the agent will expect the environment to have 

changed before each update.  If the physics step size were 

larger than the agent’s step size, the agent would choose an 

action, and its next observation would be identical to the 

previous one. 

 

 4.2.1 Pendulum Swing-Up The pendulum swing-up 

task is one of the classic control problems used to test learning 

systems.  The problem is that of getting a freely-swinging 

pendulum to hold itself upright and stay balanced (see Figure 

7).  The agent receives a reward of 1 when the pendulum is 

within 45 deg of vertical; otherwise, it receives a reward of -1.  

It has two continuous input sensors: the pendulum angle, and 

the pendulum angular velocity.  It has three actions: apply a 

constant torque in one direction, apply a constant torque in the 

other direction, or do nothing.  The pendulum is underactuated, 

so the agent must learn to swing it back and forth to build 

momentum in order to reach the top.  It must stop applying 

force at just the right time (or apply an opposing force before 

reaching the top) to avoid overshooting the goal.  Each trial 

lasts 20 s.  At the start of each new trial, the pendulum is given 

a random angle and angular velocity.  This helps the agent 

experience more of the state space faster. 

 

 
Figure 7: A physically simulated pendulum suspended in 

midair. 

 

 Figure 8 shows the agent’s learning performance on the 

pendulum swing-up task.  It reaches nearly optimal 

performance in about 60 trials. 
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Figure 8: Learning performance on the pendulum swing-up 

task using the following parameters: physics step size = 
0.01 s, agent step size = 0.1 s, pendulum mass = 1.0 kg, 

pendulum length = 1.0 m, ODE solver = "quickstep" (with 20 
iterations per step), pendulum angle range = +/- 180 deg, 

pendulum angular velocity range = +/- 500 deg/s, pendulum 
torque range = +/- 2 N·m, continuous sensor resolution = 
16, τvalue= 0.01 s, policy learning multiplier = 2, number of 

runs averaged = 10. 

 

 Figure 9 shows the (rather interesting) value functions 

learned over the course of a single run.  Note that the agent’s 

continuous sensor for the pendulum angle is circular because 

the angle can jump directly from -180 to 180 and vice versa.  

This means that the value function images would be more 

realistic if we wrapped them around a cylinder to join the ends 

of the input range. 

 

 
Figure 9: Learned value functions observed at the end of 
the 1

st
, 5

th
, 20

th
, and 100

th
 trials of the pendulum swing-up 

task.  The horizontal axis in each image is the pendulum's 
angle (i.e. the angle between the pendulum and vertical), 

whose range is +/- 180 deg and wraps directly from -180 to 
180.  The vertical axis is the pendulum's angular velocity in 

deg/s which ranges from -500 to 500 deg/s.  This agent 
used the same parameters as in the pendulum learning 

performance plot. 

 

 Finally, Figure 10 shows the value function and policy 

neural networks before and after learning.  The connection 

weights display distinguishable patterns that correspond to the 

actual state space.  The center region of the connection weights 

contains mainly positive connections leading to the value 

function neuron, indicating a high value estimation for those 

states. 

 

 
Figure 10: A visual representation of the pendulum agent's 
neural networks before (left) and after (right) learning.  The 

neurons on the left side of each image are the state 
representation.  The neurons on the top right represent the 

policy's three actions.  The neuron on the bottom right 
represents the value function.  Green connections are 

excitatory (positive); red connections are inhibitory 
(negative).  Thicker connections have a larger weight 

magnitude. 

 

 4.2.2 Cart-Pole/Inverted Pendulum This task, known 

as the cart-pole task or the inverted pendulum task, is another 

classic learning problem.  The problem is that of learning to 

balance a pole attached to a cart by applying forces to the cart 

alone (see Figure 11).  If the cart position is beyond one end of 

the track, or if the pole falls beyond some threshold angle, the 

agent is given a -1 reward; otherwise, it is given a reward of 1 

on every step.  It has four continuous input sensors: the cart 

position, the cart velocity, the pole angle, and the pole angular 

velocity.  It has three actions: apply a constant force to the left 

left, apply a constant force to the right, or do nothing.  A 

common goal for this task is to achieve a balancing time of 30 

min (1800 s). 

 

 
Figure 11: A physically simulated cart with an attached pole 

situated on a platform. 
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 Figure 12 shows the learning performance of a single 

typical run.  Once the important parts of the state space have 

been fully explored, failures become very sparse, leading to a 

roughly exponential increase in learning performance. 

 

 
Figure 12: Typical learning performance for a single run of 
the cart-pole task using the following parameters: physics 
step size = 0.01 s, agent step size = 0.05 s, cart mass = 1.0 
kg, pole mass = 0.1 kg, pole length = 1.0 m, coefficient of 
(static and kinetic) friction between cart and ground = 0, 

ODE solver = "quickstep" (with 20 iterations per step), cart 
x position range = +/- 2.4 m, cart x velocity range = +/- 2.4 
m/s, pole angle range = +/- 12 deg, pole angular velocity 

range = +/- 100 deg/s, cart force range = +/- 10 N, 
continuous sensor resolution = 8, τvalue = 0.001 s, policy 

learning multiplier = 50. 

 

5 CONCLUSIONS 
 This paper has discussed some of the key issues involved 

in designing general purpose RL agents.  The result of this 

discussion was an agent design that uses temporal difference 

learning and an RBF state representation.  After that we 

introduced the Open Source library Verve, a C++ 

implementation of the agent designed here.  Finally, we showed 

results from several experiments that validate the library’s 

effectiveness. 

 There are several limitations in the current implementation 

which will be addressed in future work.  The main limitation is 

that the computational space and time requirements grow 

exponentially with the number of inputs.  This is mainly due to 

the exhaustive state representation that combines all inputs into 

a higher level representation.  This might be solved by using 

modular hierarchical policies, allowing agents to operate on 

low- and high-level sensory inputs and actions. 

Another limitation is that the agents learn to select from a 

finite number of actions, but they do not learn continuous 

control signals.  The action set must be predefined by the user.  

Future implementations will autonomously learn continuous 

action signals instead of simply acting as a switching system. 

 A third limitation is that the agents have no temporal state 

representation, so they cannot predict future events at specific 

times.  One possible solution is to use a tapped delay line 

scheme [8], enabling the agents to learn temporal correlations 

between events. 

An avenue of investigation currently underway is 

curiosity-driven exploration [11, 12, 13], a topic related to the 

field of developmental robotics.  Rather than rely solely upon 

random action selection, an intrinsic curiosity drive can 

motivate agents to explore “interesting” parts of the state space.  

This trains predictive models (used for planning) more 

efficiently.  Such curious agents decide for themselves which 

situations are worth exploring. 

The open-endedness of the Verve library makes it 

applicable to a wide variety of tasks.  Virtual characters in 

computer simulations (e.g., video games, virtual reality training 

scenarios) could learn to animate themselves.  User interfaces 

for personal computing devices could adapt themselves through 

trial-and-error learning.  Agents controlling real machines (e.g., 

mobile robots, unmanned aerial vehicles) could train 

themselves with minimal human teaching.  These agents could 

even learn primarily in simulations before being transferred to 

physical robots, making the training process cheaper, safer, and 

faster.  Any problem that can be formulated as an RL problem 

is a potential application for Verve agents. 

It is hoped that this work will help spread reinforcement 

learning research to new audiences and add value to the field in 

general. 
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