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Abstract

We present a novel cognitive architecture, Sapience, in-
spired by the high-level organization of the mammalian
brain. It is intended for reinforcement learning prob-
lems, is scalable to high-dimensional sensory and mo-
tor spaces, utilizes curiosity rewards to improve its own
world model, and is directly implementable in software.

We aim towards the long-term goal of a general purpose
“software brain” applicable to all kinds of real-time motor
control tasks. How can this goal be achieved? Our gen-
eral strategy is to engineer a cognitive architecture combin-
ing systems-level neuroscience with machine learning meth-
ods. We first take inspiration from the mammalian brain’s
high-level organization and function. Thus, our architec-
ture includes five components, functional abstractions of the
sensorimotor cortex, hippocampus, basal ganglia, cerebel-
lum, and prefrontal cortex regions. (Note that our focus is
brain-inspired engineering, not biologically plausible brain
models.) To make the architecture concrete, we then choose
specific machine learning algorithms for every component,
each providing a unique computational benefit to the over-
all system. These include Bayesian networks, unsupervised
learning kernel mixture models, supervised learning neural
networks, and reinforcement learning.

What should be the learning objectives of this architec-
ture? We use theoretical reinforcement learning (RL) as
an organizing principle (Sutton and Barto 1998). The pri-
mary objective is to learn complex motor control tasks de-
fined as RL problems. We distinguish between two related
objectives: to solve externally given RL tasks, and to im-
prove an internal world model (which implicitly helps exter-
nal RL). Corresponding to these objectives are two types of
reinforcements: external (programmer-defined) reinforce-
ments which define the task, and internal “curiosity rewards”
(Schmidhuber 1991) for world model improvements, which
encourage active sensory exploration.

The resulting cognitive architecture, which we call “Sapi-
ence,” represents a complete learning system which can han-
dle arbitrary real-valued sensory (including reinforcements)
and motor arrays. It is designed to be practical: directly im-
plementable in software, scalable with available computing
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resources, and generally applicable (e.g., for video games
and robotics). The entire architecture has already been im-
plemented in software, along with many test programs and
analysis tools. No aspect described here is merely a hy-
pothetical mechanism; every part has been instantiated ex-
plicitly in C++. As the current implementation is relatively
untested, most of our current effort involves evaluating it on
various motor learning scenarios.

Here we describe the architecture at a high-level, illustrat-
ing its general learning objectives and high-level organiza-
tion. More details will appear in the primary author’s PhD
thesis (in preparation).

Architecture

The Sapience architecture includes five components (Figure
1). All communication (among components and with the en-
vironment) uses a common format: real-valued arrays. The
system is updated at a fixed rate (e.g., 10 Hz); on each update
step it receives new inputs, performs internal processing, and
produces new outputs.
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Figure 1: Components and corresponding brain regions.



Sensorimotor Belief Network This component is an in-
ternal world model. It learns a probabilistic model of in-
coming data patterns, produces motor control signals, and
measures model improvements for curiosity rewards.

It is structured as a hierarchical empirical Bayesian net-
work, combining the practical belief propagation algorithm
of Pearl (Pearl 1988) with an unsupervised learning ker-
nel mixture model (kernel-based Maximum Entropy learn-
ing Rule, or KMER (Van Hulle 2000)). Each node of the
network uses KMER to learn online the conditional proba-
bility distributions relating it to other nodes. The network is
structured as a hierarchy to combat the curse of dimensional-
ity: high-dimensional input data spaces are subdivided into
many smaller spaces, thus providing a fixed limit on each
node’s input dimensionality. In Bayesian network terms,
likelihood messages come from raw input data (bottom-up),
and priors come from the hierarchy’s root node (top-down).
The root node’s prior distribution comes from the Sequential
Memory component (described below). The posterior distri-
butions computed at each node provide a distributed belief
representation of the world. Furthermore, the concatenated
posteriors should be more linearly separable than the input
data since kKMER can produce sparse codes. Other compo-
nents in the architecture can influence this belief representa-
tion through “virtual evidence.”

To measure improvements to this world model, we use
the Jensen-Shannon divergence between the prior and pos-
terior distribution at each node as a measure of information
gain (similar to the KullbackLeibler divergence approach in
(Schmidhuber, Storck, and Hochreiter 1995)). The mean in-
formation gain across all nodes then provides an internal cu-
riosity reward to the Serial Decision Maker.

Sequential Memory This component learns sequen-
tial predictions which provide a prior distribution to the
Bayesian network’s root node. We use the dynamic re-
construction algorithm described in (Haykin 2008) (section
13.11). This involves a tapped delay line array representing
a history trace of recent events (i.e. the root node’s likeli-
hood), coupled with a single-layer neural network predictor
trained to predict the next pattern from the current history
trace. Additionally, the history trace is provided to the Se-
rial Decision Maker for making temporally precise reward
predictions.

Serial Decision Maker This component performs re-
inforcement learning, using neural networks to represent
context-dependent value and action selection (i.e. an actor-
critic architecture). The Bayesian network’s posteriors pro-
vide input context. Both types of reinforcement (external
and internal) influence learning here. To generate a train-
ing signal for the neural networks, rather than using the
well-known temporal difference (TD) algorithm (Sutton and
Barto 1998), we opt for the “primary value learned value”
(PVLV) dopamine model (O’Reilly et al. 2007), which aims
to overcome TD limitations by using separate mechanisms
for learning primary rewards and conditioned stimuli. Ac-
tion selection is performed with a winner-take-all mecha-
nism. Action choices influence a subset of nodes in the
Bayesian network which model motor-related data. (The
priors from these nodes then produce motor control signals).

Action choices also modify the Working Memory compo-
nent’s contents.

Parallel Decision Memory This component automates
well-learned actions. It watches the Serial Decision Maker’s
action selection and, over several trials, learns to assume
control, freeing the Serial Decision Maker to focus on trial-
and-error learning, not repetitive actions, as described in
(Peck, Streeter, and Kozloski 2007). It uses single-layer neu-
ral networks (mapping context to actions) trained via super-
vised learning. Its parallel structure enables driving multiple
motor and working memory targets simultaneously.

Working Memory This component provides a set of gen-
eral purpose memory cells whose contents can be individu-
ally read and written. Essentially, this extends the set of RL
choices beyond just motor actions to include working mem-
ory actions (active storage and recall), an arrangement in-
spired by the prefrontal cortex/basal ganglia/working mem-
ory (PBWM) model (Hazy, Frank, and O’Reilly 2007). This
component augments the system’s world model with con-
textual items not immediately present in sensory space. The
recurrent combination of RL-based decision making with
these memory cells (whose contents influence decision mak-
ing) provides a sort of general RL-programmable computer.
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